СОЛО на клавиатуре

Картинки на века: история популярных компьютерных символов

Сергей и Марина Бондаренко, 3DNews
11.12.2014

Откуда взялись такие привычные и понятные компьютерные символы, которыми покрыт ноутбук? Кто придумал курсор, почему в адресе электронной почты появилась «собака», какой секрет хранит логотип Bluetooth и прочие любопытные факты — в нашем новом материале

С тех пор как человек осознал, что может сделать рисунок, он не переставая совершенствовал свои навыки в этом умении. Он рисовал всё, что видел и о чём думал. И это было не просто развлечение или бесполезное действие. Визуальные образы на глине, камне, холсте и прочем помогали дополнить человеческую речь и служили своего рода средством коммуникации. Благодаря этому умению была изобретена письменность — универсальная система символьной коммуникации, которая заметно ускорила дальнейший темп развития человечества.

Практически любая вещь несет на себе следы этого очень важного открытия: на нашей одежде имеются ярлыки с указанием размера и страны-производителя, на бытовой технике полно надписей, касающихся режимов работы и функций устройств, на светильниках обозначена допустимая мощность используемых ламп и так далее. И если очень внимательно присмотреться ко всем этим вещам, можно заметить, что, помимо простого текста, на разных устройствах используются также вспомогательные символьные обозначения.

Их значение очень велико. Стоит взять в руки любое электронное устройство — и вы безошибочно определите, какую именно нужно нажать кнопку, чтобы его включить, увеличить или уменьшить яркость на экране, отключить звук и так далее. Посмотрев на одни только значки на корпусе ноутбука, можно сделать вывод о текущем режиме работы или о начинке мобильного компьютера. Понятные современному человеку обозначения используются так давно, что мы не задумываемся, откуда все они взялись. Давайте сегодня вспомним о том, как родились самые популярные знаки.

Символьные знаки существенно упрощают передачу смысла, они более емкие и воспринимаются быстрее. Например, для водителя лучший способ быстрого предупреждения — яркий знак на дороге. Если бы на щитах писали сообщения вроде: «На данном участке дороге необходимо быть внимательным, поскольку ее могут перебегать дети», водители просто не успевали бы читать все это и реагировать.

Кнопка включения

Символ, обозначающий кнопку включения электронного устройства, знаком всем, ведь именно с него начинается работа подавляющего большинства электроприборов.

Впервые его прототип можно было увидеть на военной аппаратуре времен Второй мировой. Однако в то время его смысл был неочевидным (по причине, о которой мы расскажем ниже), и повсеместно он стал применяться позднее, с того момента, когда в обиход вошли интегральные микросхемы, которые начали появляться примерно в конце шестидесятых годов прошлого века.


Джек Килби (Jack Kilby) — человек, получивший Нобелевскую премию за открытие интегральной микросхемы

Электрическое состояние и работа логических элементов характеризовались уровнями сигналов на его входах и выходе. Сигнал небольшого (или нулевого) напряжения, уровень которого не превышал некоторого значения (0,3—0,4 В), в соответствии с двоичной системой счисления было принято называть логическим нулём (0), а сигнал более высокого напряжения (по сравнению с логическим нулём) — логической единицей (1). Эти простые символы послужили наглядным обозначением «выключено» и «включено».

В середине семидесятых годов в СССР выпускались цветные телевизоры «Электрон». Размер лампового телевизора, равно как и его вес, по современным меркам были огромными: в одиночку перенести такое устройство было довольно сложно. Переключение между каналами осуществлялось с помощью массивного селектора каналов ПТК, или переключателя телевизионных каналов (в восьмидесятых годах этот элемент канул в Лету, уступив более надежным кнопочным переключателям и невероятно удобным ИК-пультам ДУ). На передней панели, под переключателем каналов, присутствовала «качелька» для включения/выключения телевизора. Эта деталь удивительным образом схожа с аналогичным элементом на современных плеерах и всяческой бытовой технике. На самом деле «качелька» была лишь декоративной насадкой, которая с помощью несложного рычага осуществляла движение спрятанного тумблера. В модели «Электрон-710» по краям «качельки» на панель телевизора нанесены словесные обозначения «вкл.» и «выкл.».

Но если взять последующие модели этого же завода, «Электрон-711» или «Электрон-714», которые практически не отличались по дизайну от предшественника, можно заметить, что режимы включения обозначены как «0» и «I». Объединив эти два символа, мы получим знакомый всем логотип кнопки включения.

Официально стандарт обозначения кнопки включения устройства был утвержден в 1973 году Международной электротехнической комиссией (International Electrotechnical Commission). Знаку в виде вертикальной линии на фоне разорванного круга было дано несколько расплывчатое определение: «состояние ожидания включения» (standby power state). Чуть позже другая организация, занимающаяся стандартизацией, Институт инженеров по электротехнике и электронике (IEEE), упростила это определение, сократив его до простого «питание» (Power).

Для современного человека ноль и единица — это самые базовые средства счета. Однако если задуматься, то понятие «ноль» не столь очевидно, как другие цифры. Человек учится считать не с нуля, а с единицы. В силу ограниченного воображения и прагматичности мышления ему трудно соотнести что-то с «ничем». Поэтому, например, древние греки или римляне в своей системе счета не знали цифры ноль. Египтяне, шумеры и китайцы неосознанно использовали ноль, но не как цифру, а как пустоту, место для заполнения внутри числа. Ноль, равно как и прочие цифры, не совсем корректно называемые сегодня арабскими, берут свое начало в Индии, где была создана десятичная система счисления с цифрами, которые после незначительных изменений обрели знакомый сегодня вид. Если сравнить написание цифр древними индийцами и арабскую систему цифр, можно увидеть, что, например, 2 и 5 в современном написании гораздо больше похожи на индийские символы.

Первое свидетельство возникновения цифры ноль можно увидеть на стене храма в центральной Индии, в крепости Гвалиор. Там можно найти надписи на санскрите, датируемые примерно девятым веком (хотя, вероятно, ноль использовался древнеиндийскими математиками еще раньше). Они содержат новый знак в виде круга. По одной из версий, округлая форма знака «ноль» родилась в результате экспериментов древних математиков. Многие из них предпочитали делать вычисления с помощью каких-то предметов. Так, например, в Китае для счета использовали счетные палочки. В Индии для решения задач использовались камни. Разложив их на земле, математики перекладывали их с места на место, а под убранным камнем оставалась округлая ямка — то самое «ничего», или ноль. Любопытно, что открытие цифры ноль примерно совпадает с появлением философского понятия «ничто», шуньята, концепции небытия и вечности, характерной для древнеиндийской культуры. То ли культурный аспект стимулировал научные изыскания у людей того времени, то ли наоборот — математические выкладки заставили их углубиться в философские размышления. Одно небольшое открытие, а какой поворот в истории человечества — от нового удобного способа счета до символа кнопки включения любого прибора!

Режим ожидания

С появлением все более сложных устройств человек столкнулся с необходимостью применения режима ожидания, суть которого состоит в том, что устройство готово к работе, но не выполняет свои функции. Режим обеспечивал быстрый запуск и экономил время на настройку некоторых опций устройств. Например, до появления данной функции телевизор включался довольно долго, «прогреваясь» с десяток секунд, в то время как в режиме ожидания он потреблял минимальное количество энергии и мгновенно был готов к работе.

Новшество удобное, но вот донести до неискушенного потребителя, что означает «режим ожидания», было не очень просто. Поломав голову, дизайнеры предложили очень удачное сравнение — человеческий сон. Во время ночного отдыха функциональность живого организма замедляется, но при этом возможно быстрое пробуждение и активная деятельность. Так родился значок в виде полумесяца, а режим ожидания превратился в «режим сна», или в «спящий режим».

Кто придумал курсор?

Изображение курсора появилось на экране вместе с изобретением первого компьютерного манипулятора — мыши. Свою работу над мышкой Дуглас Энгельбарт (Douglas Engelbart) начал еще в 1961 году. Работать ему было очень сложно, поскольку манипулятор создавался для устройств узкой специализации.

В то время компьютеров как таковых, можно сказать, не было, и представление о том, как они будут выглядеть, только-только начинало формироваться. И, понятное дело, возникла необходимость в точном позиционировании объектов на экране.

Изобретатель первой компьютерной мышки может служить примером для тех, кто не чувствует уверенности в своих силах. В глазах сегодняшних пользователей Энгельбарт выглядит гением, ведь его открытие пережило самого автора, став основным человеко-машинным интерфейсом на ближайшие десятилетия. Безусловно, Дуглас был очень изобретательным и проницательным, однако свои таланты этот человек развивал, собирая и тщательно анализируя труды других. И кстати, он не был наделен сверхспособностями в схемотехнике. Несмотря на то, что отец Энгельбарта держал магазин по продаже и ремонту радиоприемников, изобретатель мыши признался в одном интервью, что сам попытался сделать лишь несколько детекторных приемников, но ни один из них так и не заработал.

Неизвестно, была бы придумана компьютерная мышь, если бы Дуглас не прочел труд американского инженера Вэнивара Буша (Vannevar Bush).


Вэнивар Буш

В 1945 году в журнале The Atlantic вышло его эссе «Как мы можем мыслить», где Вэнивар рассуждает о необходимости хранения информации большого объема с удобной системой навигации. Проводя параллель с человеческим мышлением, Буш точно описывает гипертекстовую систему (некое гипотетическое устройство под названием «Мемекс») с возможностью использования ассоциативных ссылок и примечаний. Энгельбарту и его коллегам удалось воплотить в реальность многие из идей Вэнивара.

Изобретение мыши было лишь маленькой частью амбициозного проекта по расширению человеческого интеллекта, который в оригинале носил название Augmenting human intellect. За этим громким названием стоит детальная разработка структуры компьютера и формирование принципов общения пользователя с устройством. Энгельбарт собрал команду ученых и единомышленников, которая составила отдел Augmentation Research Centre при Стэнфордском исследовательском институте.

В сохранившемся до наших дней техническом описании проекта можно увидеть множество точных и поразительных предсказаний относительно компьютерной техники. В рамках этого проекта Энгельбарт утверждал, что компьютер должен состоять из клавиатуры, ЭЛТ-экрана, мыши, также он рассказывает о базовых принципах работы с файлами и папками. Кроме того, Дуглас подробно описывал, почему удобно использовать новый компьютерный манипулятор для редактирования текста и чем он лучше уже существовавших в то время разработок — «светового пера» и «джойстика». Изобретатель компьютерной мыши впервые познакомил всех с такой фантастически полезной вещью, как буфер обмена, и раскрыл смысл команд «скопировать», «вырезать», «вставить». Дуглас объяснил, как все это работает, настаивая на концепции «интерактивного редактирования», или NLS («oN-Line System»).

В книгах и прессе часто говорят, что Дуглас сам назвал свое устройство мышью, но это не так. Для технической документации устройство называлось очень скучно — XY Position Indicator for a Display System. Во время работы над ним кто-то в лаборатории заметил, что манипулятор с хвостом-проводом похож на живого грызуна, и название прижилось. Однако, как утверждал сам Энгельбарт, кто именно из его коллег первым догадался назвать компьютерную мышку мышкой, никто и не помнит.

Долгое время команда Дугласа Энгельбарта экспериментировала с дизайном манипулятора. Даже когда инженеры «нащупали» верное направление концепции и формы, они все равно продолжали искать способ сделать новое устройство лучше и удобнее. Для этого, например, они развернули провод, так, чтобы он шел от пользователя к компьютеру. В первых версиях компьютерного манипулятора он выводился в сторону пользователя, что приводило к тому, что провод путался под рукой и мешал. Первая компьютерная мышь была громоздкой, в деревянном корпусе с двумя перпендикулярно вращающимися колесами, которые передавали на датчики информацию о движении указателя по вертикали и горизонтали. Сперва кнопка была одна, но Дуглас хотел сделать более функциональный манипулятор, в идеале — с пятью кнопками, под каждый палец руки.

Однако с этой идеей ничего не получилось, и пришлось оставить максимальное количество кнопок, с которыми было удобно работать, — три. Нехватку клавиш на мыши предлагалось компенсировать дополнительным пятикнопочным клавиатурным блоком. Последний действительно позволял ускорить ввод данных — при использовании комбинаций кнопок, на нем можно было набирать текст — как с большой клавиатуры. Но на практике этот модуль оказался сложным в освоении, так как пользователю нужно было запомнить большое число сочетаний клавиш.

Некоторое время Энгельбарт искал спонсоров своих разработок и даже вел переговоры с NASA, однако крупнейшее космическое агентство не заинтересовалось его изобретением из-за того, что мышь не работала должным образом в условиях невесомости.

Курсор за семью печатями

Стоит отметить, что проект Дугласа Энгельбарта вообще-то был не первым компьютерным манипулятором. Нечто подобное уже имелось в распоряжении военных разных стран, и эти разработки также могли бы сделать переворот в компьютерной индустрии, если бы их не держали под грифом «Секретно». И конечно, форма курсора, могла бы быть иной — например точкой, треугольником или еще чем-нибудь.

Так, например, в далеком 1946 году совсем молодой инженер Ральф Бенджамин (Ralph Benjamin) сконструировал для британского флота первый трекбол roller ball, выполняющий функции указателя точки на радаре. Во время войны Ральф потерял родителей в ходе геноцида евреев, а сам был вынужден бежать из Германии в Швейцарию, а позже и в Англию.


В возрасте 91 года профессор Ральф Бенджамин с огромным удовольствием рассказывает журналистам, что изобрел курсор за двадцать лет до Энгельбарта.

Чуть позднее, в 1952 году, в условиях строжайшей секретности, похожий манипулятор сделали Том Крэнстон (Tom Cranston), Фред Лонгстаф (Fred Longstaff) и Кенион Тэйлор (Kenyon Taylor). Забавная деталь — в качестве «шарика» в конструкции этого трекбола инженеры использовали шар для канадского пятипинового боулинга. Это устройство был частью системы DATAR, которая расшифровывалась как Digital Automated Tracking and Resolving («цифровое автоматическое слежение и расчет»).

По замыслу военных, она должна была собирать информацию с сенсоров на разных кораблях и выводить их на экран. Оператор мог просматривать данные о кораблях с места боевых действий, выбирая их манипулятором. Но когда трекбол был сделан, стало понятно, что это устройство слишком опережает свое время, а доработка и без того дорогой системы DATAR (бюджет составил почти два миллиона канадских долларов) требует еще большего финансирования.

Пока на другой стороне планеты думали, что им делать с этим трекболом, в СССР с 1953 по 1957 год сконструировали и запустили в работу первую протомышь, которая, само собой, тоже использовалась военными структурами.

На вооружение отечественных систем ПВО была принята система «Воздух-1», разработанная под началом конструктора Михаила Ивановича Михайлова.

Согласно информации из специальной учебной литературы, она была предназначена для полуавтоматического съема, автоматической передачи, обобщения и отображения данных о воздушной обстановке на индикаторных устройствах системы, приборного наведения истребителей-перехватчиков на воздушные цели противника, управления войсками ПВО и взаимодействия с ними. Говоря проще, эта система позволяла сопровождать до 40 целей (в том числе и своих перехватчиков) и наводить перехватчики на несколько целей одновременно. Частью «Воздух-1» являлся комплект аппаратуры АСПД-I, содержащий первичный индикатор ввода и передачи высоты и цифр (ИПН или ИПН-1) — советский вариант компьютерного манипулятора.

На этом снимке показан макет аппаратуры автоматизированной системы управления радиолокационного поста ВП-02у. Обратите внимание на зеркальный «коврик» и манипулятор в правой части стенда. Чем не двухкнопочная мышь?

Да и функции этот инструмент выполняет практически те же самые. И все это — задолго до официальной демонстрации изобретения Дугласа Энгельбарта.

Наземная система автоматического наведения на цель самолетов-перехватчиков в США (Semi-Automatic Ground Environment), созданная приблизительно в это же время, также имела манипулятор-пистолет, которым можно было водить непосредственно по радару. Сердцем этой системы был компьютер AN/FSQ-7, созданный компанией IBM.

Почему курсор наклонен?

Но вернемся все-таки к курсору. Первыми его могли увидеть участники Осенней объединенной компьютерной конференции (Fall Joint Computer Conference) 9 декабря 1968 года. Первый курсор в виде стрелочки указывал положение на экране, где выполнялось редактирование текста.


Первый курсор (под словом MOVE)

Демонстрация возможностей компьютерного манипулятора Дугласа Энгельбарта была записана на видео и вошла в историю как «Мать всех презентаций» (The Mother of all Demos).

Но если вы внимательно всмотритесь в изображение первого курсора, то заметите, что он несколько отличается от современного указателя на экране монитора. Он прямой, в отличие от привычного нам курсора, который имеет наклон в левую сторону. Зачем же его наклонили?

Спустя некоторое время после изобретения мыши команда Augmentation Research Centre стала распадаться, часть ученых перешла в Xerox PARC, где продолжила совершенствовать манипулятор. Вскоре компания Xerox смогла похвастаться первыми ПК, которые управлялись не только командами с клавиатуры, но и с помощью первых моделей компьютерных мышей.

Разрешение экрана в первых моделях компьютеров Xerox Alto составляло 808 точек по вертикали и 606 точек по горизонтали. Из-за этого ограничения было невозможно добиться четкого отображения вертикального курсора, поэтому его пришлось «повернуть». Новый курсор был лучше и по ряду других причин. Вертикальный курсор мог сливаться с символами на экране, а наклоненный — нет. Элементы интерфейса операционной системы Star содержали главным образом вертикальные и горизонтальные линии, на фоне которых визуально определить положение наклоненного курсора было проще.

Также не стоит забывать о том, какая низкая производительность была у компьютеров в то время. При создании курсора разработчикам казалось вполне логичным разместить «горячую точку» на острие курсора с координатами (0;0) — это позволяло сэкономить несколько циклов просчета подпрограммой, определяющей положение курсора.

Что же касается вопроса «Почему курсор наклонен именно в левую сторону?», то и тут найти ответ несложно. Попробуйте указать пальцем на экране монитора на какую-нибудь деталь. Видите, он наклонен в ту же сторону (если только вы не левша). Поэтому и курсор с наклоном влево выглядит нагляднее.


← назадоглавлениедалее →

Оставить комментарий


Ваш комментарий будет опубликован после модерации.


Rambler's Top100
ErgoSolo
© 1997— «ЭргоСОЛО»
Дизайн: Алексей Викторович Андреев
Вебмастер: Евгений Алексеевич Никитин
Пишите нам:
Звоните нам по тел. +7 (495) 995-82-95. Мы работаем круглосуточно. Прямо сейчас на все Ваши вопросы готова ответить наша служба поддержки:
Круглосуточная трансляция из офиса «ЭргоСОЛО»

Поможем бросить курить
Все права на материалы, находящиеся на сайте ergosolo.ru, охраняются в соответствии с законодательством РФ, в том числе, об авторском праве и смежных правах.
Использование материалов сайта без разрешения ООО "ЭргоСоло" ЗАПРЕЩЕНО!